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Computational Algorithms for High-Fidelity 
Multidisciplinary Design of Complex Aerospace 

Systems 

AFOSR GRANT NO. AF F49620-01-1-0291 

FINAL REPORT 

Antony Jameson and Juan J. Alonso 
Department of Aeronautics k Astronautics 

Stanford University 
Stanford, CA 94305 

Objectives 
The objective of our AFOSR-sponsored work under this grant has been to advance the tools that are required 
to make high-fidelity multidisciplinary design of aerospace systems feasible. During this grant, our approach 
was based on the use of gradient-based optimization coupled with system sensitivity information that is 
inexpensively obtained via adjoint methods. Our effort was divided into two main components: the primary 
effort was focused on the application of adjoint techniques to the problem of aerodynamic shape optimization. 
The second effort developed a framework to extend the adjoint approach to treat additional disciplines in 
the design problem (structures, stability & control, propulsion, etc.), although in this work it has focused 
on the problem of aero-structural design. 

Status of Effort 

The major objectives stated in our proposal have been completed and achieved. 

• During the first year, with the help of S. Nadarajah, a number of different studies on the suitability 
of the continuous and discrete adjoint formulations for design using the viscous Reynolds-Averaged 
Navier-Stokes equations were carried out. Our conclusion is that the implementation of the continuous 
formulation is more straightforward and leaves more freedom on the choices of discretization of the 
adjoint equations. We found, however, that the discrete adjoint approach can be very helpful in 
resolving some of the mathematical ambiguities that are left in the continuous approach when creating 
imposing boundary conditions. 

• We have completed a new formulation for the adjoint gradient formulae which only depends on the 
evaluation of a surface integral. This reduced gradient approach has been tested within the context of 
structured meshes, but promised to resolve one of the major issues in the implementation of adjoint 
methods on unstructured meshes. We hope to pursue this matter in future work. 

• During all of our optimizations, we have been investigating the possibility of using smoothing and/or 
preconditioning of the gradients to improve the convergence and robustness of the search procedure. 
Various examples are presented in this report. 

• We have started performing planform optimization studies using the adjoint method. In the past, all 
of our work had fixed the planform of the aircraft and had focused on changes to the airfoil sections 
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along the span (in order not to influence the other disciplines that may have dictated the exact shape 
of the planform. We are now in a position to obtain accurate gradients of the cost functions of interest 
to changes in the planform shape (sweep, area, taper, etc.) We intend to continue this work and to 
include structural modeling capabilities to ensure that aerodynamic changes in the planform are not 
detrimental to the overall performance of the vehicle. 

• We have developed a theoretical framework for the optimization of multi-disciplinary systems that 
allows the coupling of multiple adjoint solutions to provide overall system sensitivities. This method 
is rather promising in its application to high-fidelity design. 

• We have also demonstrated this theoretical framework within the context of detailed aero-structural 
design, where both the shape of the aircraft and the shape and material distribution of the underlying 
structure are simultaneously changed to obtain improvements in performance measures that combine 
both aerodynamic and structural observations. 

In our opinion, the result of this work has significantly advanced our knowledge in the application of adjoint 
techniques to both aerodynamic shape optimization and multi-disciplinary, aero-structural design problems. 
The following sections summarize the key results of this work. Detailed references are provided that include 
many more details on the derivations and applications of our methods. 

Accomplishments 

This section mirrors the actual work described above (also in our Statement of Objectives). Each section 
focuses on one of the elements of our mathematical formulations and design work. 

Continuous vs. Discrete Adjoint Method Studies 
The objective of this study was to compare the continuous and discrete adjoint-based automatic aerody- 
namic optimization approaches. Our intention was to study the trade-offs between the complexity of the 
discretization of the adjoint equation for both the continuous and discrete approaches, the accuracy of the 
resulting estimates of the gradients, and their impact on the computational cost to approach an optimum 
solution. For details on the derivation and implementation of the continuous adjoint method, please refer 
to the cited bibliography. We will briefly present the complete formulation of the discrete adjoint equation 
and will then investigate their differences. The similarities between the continuous 'and discrete boundary 
conditions are also explored. The results demonstrate two-dimensional inverse pressure design as well as the 
accuracy of the sensitivity derivatives obtained from continuous and discrete adjoint-based equations when 
compared to finite-difference gradients. More details can be found in the publications in the bibliography. 

The discrete adjoint equation is obtained by applying the control theory directly to the set of discrete 
field equations. The resulting equation depends on the type of scheme used to solve the flow equations. The 
following discussion uses a cell centered multigrid scheme with upwind biased blended first and third order 
fluxes as the artificial dissipation scheme. A full discretization of the equation would involve discretizing 
every term that is a function of the state vector 

nx   ny 

6I = 5IC + J2^2^LS (RH^- + D(w)id) , (1) 

where SIC is the discrete cost function, R(w) is the field equation, and D(w) is the artificial dissipation 
term. 

Terms multiplied by the variation 6wij of the discrete flow variables are collected and the following is 
the resulting discrete adjoint equation, 



where 

dt 

+ 

-KÄ-^tC)* 
♦K-ilC-^-itO* 

+5di+ij - 6di_itj + SdiJ+i - Sdu_i, 

(2) 

(3) 

is the discrete adjoint artificial dissipation term and V is the cell area. The dissipation coefficients e2 and e4 

are functions of the flow variables, but to reduce complexity they are treated as constants. 
In the case of an inverse design, 6IC is the discrete form of the square of the pressure integral around the 

airfoil surface. In contrast to the continuous adjoint, where the boundary condition appears as an update to 
the costate variables in the cell below the wall, the discrete boundary condition appears as a source term in 
the adjoint fluxes. At cell i, 2 the adjoint equation is as follows, 

V dt 

+§[-.B£,M,3-IM]+*, 

where V is the cell area, $ is the source term for inverse design, 

$ = (-A%V2i,2 + Ax€V3i]2 - (p - Pr)As») hifl, 

and _ „ 

(4) 

^J.j = A%. + i.: 
df 
dw 

Ax. ̂ i+J,: 
95 
9w Ji,2 

All the terms in equation (4) except for the source term are scaled by the square of Ax. Therefore, as the 
mesh width is reduced, the terms within parenthesis in the source term divided by ASJ must approach zero as 



Grid Size Cont. Disc. Cont-Disc 

96 x 16 3.106e - 3 2.397e - 3 9.585e - 4 
192 x 32 1.730e - 3 1.724e - 3 2.130e-4 
256 x 64 1.424e - 3 1.419e - 3 4.749e - 5 

Table 1: Li norm of the Difference Between Adjoint and Finite Difference Gradient 

the solution reaches a steady state. One then recovers the continuous adjoint boundary condition described 
in earlier works. 

If a first order artificial dissipation equation is used, then equation (3) would reduce to the term associated 
with e2. In such a case, the discrete adjoint equations are completely independent of the costate variables in 
the cells below the wall. However, if we use the blended first and third order dissipation, then these values 
are required. In practice, a simple zeroth order extrapolation across the wall produces good results. 

Replacing the inverse design boundary condition in equation (4) by the discrete form of the cost function 
results in a discrete adjoint equation for drag minimization. 

As an example of the results in the study, an inverse design test case is briefly shown here. The target 
pressure is first obtained using the FL083 flow solver for the NACA 64A410 airfoil at a flight condition of 
M = 0.74 and a lift coefficient of Q = 0.63 on a 192 x 32 C-grid. At such a condition the NACA 64A410 
produces a strong shock on the upper surface of the airfoil, thus making it an ideal test case for the adjoint 
versus finite difference comparison. 

The gradient for the continuous and discrete adjoint is obtained by perturbing each point on the airfoil. 
We apply an implicit smoothing technique to the gradient, before it is used to obtain a direction of descent 
for each point on the surface of the airfoil. 

Figures (1), (2), and (3) exhibit the values of the gradients obtained from the adjoint methods and 
finite difference for various grid sizes. The circles denote values that we obtain by using the finite difference 
method. The square represents the discrete adjoint gradient. The asterisk represents the continuous adjoint 
gradient. The gradient is obtained with respect to variations in Hicks-Henne sine "bump" functions placed 
along the upper and lower surface of the airfoil. The figures only illustrate the values obtained from the 
upper surface starting from the leading edge on the left and ending at the trailing edge on the right. 

Figure (4) presents the effect of the partial discretization of the flow solver to obtain the discrete ad- 
joint equation. Here we obtain the finite difference gradients in the figure without freezing the dissipative 
coefficients. A small discrepancy exists in regions closer to the leading edge and around the shock. 

Table 1 contains values of the Li norm of the difference between the adjoint and finite difference gradients. 
The table illustrates three important facts: the difference between the continuous adjoint and finite difference 
gradient is slightly greater than that between the discrete adjoint and finite difference gradient; the norm 
decreases as the mesh size is increased; and the difference between continuous and discrete adjoint gradients 
decreases as the mesh size is reduced. The second column depicts the difference between the continuous 
adjoint and finite difference gradient. The third column depicts the difference between the discrete adjoint 
and finite difference gradients. The last column depicts the difference between the discrete adjoint and 
continuous adjoint. As the mesh size increases the norms decrease as expected. Since we derive the discrete 
adjoint by taking a variation of the discrete flow equations, we expect it to be consistent with the finite 
difference gradients and thus to be closer than the continuous adjoint to the finite difference gradient. This 
is confirmed by numerical results, but the difference is very small. As the mesh size increases, the difference 
between the continuous and discrete gradients should decrease, and this is reflected in the last column of 
table 1. 

In conclusion, 

1. The continuous boundary condition appears as an update to the costate values below the wall for a 
cell-centered scheme, and the discrete boundary condition appears as a source term in the cell above 
the wall. As the mesh width is reduced, one recovers the continuous adjoint boundary condition from 
the discrete adjoint boundary condition. 

2. Discrete adjoint gradients have better agreement than continuous adjoint gradients with finite difference 
gradients as expected, but the difference is generally small. 
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3. As the mesh size increases, both the continuous adjoint gradient and the discrete adjoint gradient 
approach the finite difference gradient. 

4. The difference between the continuous and discrete gradient reduces as the mesh size increases. 

5. The cost of deriving the discrete adjoint is greater. 

6. With our search procedure as outlined, the overall convergence of the objective function is not signif- 
icantly affected when the discrete adjoint gradient is used instead of the continuous adjoint gradient. 
Consequently, we find no particular benefit in using the discrete adjoint method, which requires greater 
computational cost. However, we believe it beneficial to use the discrete adjoint equation as a guide 
for the discretization of the continuous adjoint equation. 

Studies of Field Integral Elimination in Gradient Computations 

A new continuous adjoint method for Aerodynamic Shape Optimization (ASO) using the Euler and Navier- 
Stokes equations has been developed. Using this new method large savings in the computation of the 
gradients of aerodynamic cost functions can be achieved by reducing the volume integral part of the adjoint 
gradient formula to a surface integral over the configuration of interest. The new method offers significant 
savings for three-dimensional ASO problems on general unstructured and overset meshes. In order to validate 
the concept, the new adjoint gradient equations were implemented and tested for drag minimization problems 
of a single-element airfoil and a three-dimensional wing-fuselage configuration. The accuracy of the resulting 
derivative information for the two-dimensional problem was investigated by direct comparison with finite- 
difference gradients and the original adjoint gradients which include the volume integral. 

The Reduced Gradient Formulation 

Using the adjoint formulation that has been used in our previous work, consider the case of a mesh variation 
with a fixed boundary. Then, 

61 = 0, 

where / is the cost function of interest. However, there is a variation in the transformed flux, 

5Fi = Ci5w + 5Sijfj. 

Here the true solution is unchanged, so the variation 8w is due to the mesh movement Sx at fixed boundary 
configuration. Therefore 

Sw = Vw ■ 5x = ——SXJ (= 6w*) 
OXj 

and since 

it follows that '      r        a 
I <f>Ti- (SSijfj) dV = - I fdSw'dV. (5) 

Jv     vs,i Jv 
A similar relationship has been derived in the general case with boundary movement and the complete 
derivation will be presented in an upcoming conference paper. Now 

[ <pT6RdV    =     / 4>T^-Ci(6w-6w*)dV 
Jv Jv      "Si 

=     f <j>TCi{5w-5w*)dB 
JB 

-     I ^Ci(5w-5w*)dV. (6) 
Jv öCt 

Here on wall boundary 
C26w = 6F2-6S2jfj- (7) 
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Figure 5: Euler Drag Minimization for RAE2822: Comparison of Original Adjoint, Reduced Adjoint and 
Finite-Difference Gradients Using 3 Mesh-Point Bump as Design Variable. 

Thus, by choosing <f> satisfying the adjoint equation and the adjoint boundary condition, we have finally the 
reduced gradient formulation that 

61   = + j   VT (SSvfj + C2Sw*) d£id& 
JBw 

- [[(6S2iil>2 + 6S22i>3 + £23^4)pdfid&- 
J JBw 

(8) 

Gradient comparison for two-dimensional design 

Computations were performed for an RAE 2822 airfoil at a fixed coefficient of lift, Q = 0.6, and M«, = 0.75, 
using a C-mesh of size 192 x 32 for both the flow and adjoint solutions. Every mesh point on the airfoil was 
used as a design variable. In this case, a comparison with finite-difference gradients was not made, since 
accurate finite difference gradients cannot be calculated with the shape discontinuity caused by movement 
of a single mesh point. The gradients obtained using both the original and new adjoint formulas agree well 
in general. We believe that the new formulas may be sensitive to details of their discretization in regions of 
high curvature. A comparison with finite-difference gradients was also tried using local bump functions. In 
order to avoid geometric discontinuities, bumps were generated such that, while the same movement of each 
mesh point in turn was made as before, one-fourth of the movement was distributed to its two neighboring 
points, corresponding to local B-splines. Figure 5 shows a comparison between the gradients obtained using 
the three techniques. All three gradients agree quite well, although there is still a discrepancy near the 
leading edge. 

Planform Design Studies 

Cost Function for Planform Design 

In order to design a high performance transonic wing, which will lead to a desired pressure distribution, and 
still maintain a realistic shape, the natural choice is to set 

/ = 0:1 CD + «2 \ju-vJ dS + a3Cw 

with 
s-,              yawing 
Civ =   

Qoo&ref 

(9) 

(10) 



where 
CD =    drag coefficient, 
Cw =    normalized wing structure weight, 
p =    current surface pressure, 
pd ==    desired pressure, 
Qoo =    dynamic pressure, 
Sref —    reference area, 
"Wiving —    wing structure weight, and 
ai, «2, «3     =    weighting constants. 

A practical way to estimate Wwing is to use the so-called Statistical Group Weights Method, which 
applies statistical equations based on sophisticated regression analysis. For a cargo/transport wing weight, 
one can use 

0.557 cO.649 A0.5 wweigM = o.o<m(wdgNz)°-557s°w™Ä 
(</C)-0

o(
4(l + A)01coS(A)-10Sc°sJ„ (11) 

where 
A        =    aspect ratio, 
Nz       =    ultimate load factor; = 1.5 x limit load factor, 
SCSw     =    control surface area (wing-mounted), 
Sw       =    trapezoidal wing area, 
t/c       =    thickness to chord ratio, 
Wdg     =    flight design gross weight, 
A =    wing sweep, and 
A =    taper ratio at 25 % MAC. 

In addition, if the wing of interest is modeled by five planform variables such as root chord (ci), mid-span 
chord (c2), tip chord (c3), span (6), and sweepback(A), as shown in Figure 6, it can be seen from the wing 
weight formula (11) that the weight is estimated to vary inversely with cos (A), where A is the wing sweep. 

Figure 6: Modeled wing governed by five planform variables; root chord (ci), mid-span chord (c2), tip chord 
(C3), span (6), and sweepback(A). 



Here if the sweepback is allowed to vary and a3 is chosen to be sufficiently large in the cost function (9), 
we should expect the optimization to decrease the sweepback angle at the cost of an increase in shock drag. 

A change of span affects the wing weight of the wing weight formula (11) through changes of the trape- 
zoidal wing area (Sw), the aspect ratio (A),and the wing-mounted area (Scsw)- Prom the wing weight 
formula (11), an increase of span will cause Sw, A, and Scsw to increase, resulting in an increase of wing 
weight. Since induced drag varies inversely with the square of span, if the span is allowed to vary and 03 is 
chosen to be sufficiently large, it is expected the optimizer to reduce the span at the cost of an increase in 
drag. 

Variations of cu c2, and c3 affect the wing weight of the wing weight formula (11) via variations of aspect 
ratio {A), wing-mounted wing area {Scsw), trapezoidal wing area (Sw), and thickness to chord ratio (t/c). 
The effect of an individual chord change on the wing weight is plotted in Figure 7. Figure 7 shows that 
the wing weight of the Statistical Group Weights Method is a linear function of chord length. And because 
the slope varies along the span location, the change of chord at different span location will affect the wing 
weight differently. With the same change in chord length, the decrease of the mid-span chord (c2) tends to 
give more weight reduction than the others. 
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Figure 7:  Effect of sweepback(A), span (6), root chord(ci), mid-span chord(c2), and tip chord(c3) on the 
Statistical Group Weights Method 

If ci, C2, or c3 is allowed to vary, and again a3 is chosen to be sufficiently large in the cost function (9), 
the optimizer would be expected to reduce the chord length with a consequent increase in shock drag. 

In these ways the inclusion of a weight estimate in the cost function should prevent the optimization 
from leading to an unrealistic wing planform, and yield to a good overall performance. 



Aerodynamic Gradient Calculation for Planform Variables 

Gradient information can be computed using a variety of approaches such as the finite-difference method, 
the complex step method, and the automatic differentiation. Unfortunately, their computational cost is 
still proportional to the number of design variables in the problem. In an optimum transonic wing design, 
suppose one chooses mesh points on a wing surface as the design variables, which is on the order of 1000 
or more; it is impractical to calculate the gradient using the methods mentioned earlier. In our planform 
optimization, the design variables are points on the wing surface plus the planform variables. To evaluate 
the aerodynamic gradient with respect to the planform variables, since the number of planform variables 
(five in this study) is far less than that of the surface optimization, one could calculate the gradient by the 
finite-difference method, the complex step method or the automatic differentiation. However, the cost for the 
gradient calculation will be five times higher. A more efficient approach is to follow the adjoint formulation. 

Consider the aerodynamic contribution of the cost function (9) 

61= I5M dBi + I ipT6R dV^ 
B V 

This can be split as 
8I=[Iu>]ISw + 6III 

with 
8M = [Mw}i6w + 6Mn 

where the subscripts / and 77 are used to distinguish between the contributions associated with variation of 
the flow solution 6w and those associated with the metric variations 6S. Thus [Mw]i represents ^ with 
the metrics fixed. Note that 6R is intentionally kept unsplit for programming purposes. If one chooses ip as 
ib*. where tb* satisfies 

then 

5I(w,S)   =   6I{S) 

=    fsMiidBe+ f^SRdV^ 
B V 

B v 

«   J2ÖMiiAB+ ^1^ (R\s+ss - R\s), 

where R\s and R\s+ss are volume weighted residuals calculated at the original mesh and at the mesh 
perturbed in the design direction. 

Provided that ip* has already been calculated and R can be easily calculated, the gradient of the planform 
variables can be computed effectively by first perturbing all the mesh points along the direction of interest. 
For example, to calculate the gradient with respect to the sweepback, move all the points on the wing surface 
as if the wing were pushed backward and also move all other associated points in the computational domain 
to match the new location of points on the wing. Then re-calculate the residual value and subtract the 
previous residual value from the new value to form AR. Finally, to calculate the planform gradient, multiply 
AR by the costate vector and add the contribution from the boundary terms. 

This way of calculating the planform gradient exploits full benefit of knowing the value of adjoint variables 
ip* with no extra cost of flow or adjoint calculations. 

Choice of Weighting Constants 

The choice of a\ and a3 greatly affects the optimum shape. An intuitive choice of «i and «3 can be made by 
considering the problem of maximizing range of an aircraft. The simplified range equation can be expressed 

10 



88 D     VL.    W, 
R=CDl°9W2 

where 
C      =    Specific Fuel Consumption, 
D = Drag, 
L = Lift, 
R = Range, 
V = Aircraft velocity, 
W\ = Take off weight, and 
W2 = Landing weight. 

If one takes 

Wi    =   We + Wf = fixed 

W2   =   We 

where 
We     =    Gross weight of the airplane without fuel,   then the variation of the weight can be expressed as 
Wf     =    Fuel weight, 

SW2 = SWe. 

With fixed ^ , W\, and L, the variation of i? can be stated as 

V 
SR   = 

VL,    IVi /(5D 1     <5TV2 

-     CD
1O9

W2[D 
+lo9%-W2 

and 

¥L =      6CD \    1   sw* 
R \CD

+ logVfc W2 

SCD 1     6Cw2 

CD   ' iog^x CW: 

If we minimize the cost function defined as 

/ = CD + aCwi 

where a is the weighting multiplication, then choosing 

CD (12) 
CWoSc^ 

corresponds to maximizing the range of the aircraft. 

Design Cycle 

The design cycle starts by first solving the flow field until at least a 4 order of magnitude drop in the 
residual. The flow solution is then passed to the adjoint solver. Second, the adjoint solver is run to calculate 
the costate vector. Iteration continues until at least a 4 order of magnitude drop in the residual. The costate 
vector is passed to the gradient module to evaluate the aerodynamic gradient. Then, the structural gradient 
is calculated and added to the aerodynamic gradient to form the overall gradient. The steepest descent 
method is used with a small step size to guarantee that the solution will converge to the optimum point. 
The design cycle is shown in Figure 8. 

11 
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Applications to Aero-Structural Optimization 

During the course of this grant, we have developed and implemented a high-fidelity aero-structural opti- 
mization framework that allows the optimization of aircraft configurations described by the full Euler or 
Navier-Stokes equations and a complete linear finite element model of the structure. The framework has 
been recently completed and uses a coupled aero-structural adjoint procedure to compute coupled sensitiv- 
ities of both aerodynamic and structural cost functions to design variables that parameterize the shape of 
both the outer mold line and the structure itself. The accuracy of the sensitivities has been demonstrated 
and their use in realistic design has also been presented. In order to reduce the cost of computation of the 
sensitivities of the finite element stresses, Kreisselmeier-Steinhauser (K-S) functions are used to lump the 
constraints in the problem. 

With a suitable definition of the design variables and constraints, we are seeking to solve the following 
aircraft design optimization problem: 

minimize      I = aCo + ßW 

xA,xs€Rn 

subject to    CL = CLT 

KS > 0 

xs>xSwin- 

with the use of the coupled adjoint procedure to calculate the sensitivities required by the optimizer. 

Aero-Structural Sensitivity Analysis 

For the case of aero-structural sensitivities, we have coupled aerodynamic (RA) and structural (Rs) governing 
equations, and two sets of state variables: the flow state vector, w, and the vector of structural displacements, 
u. In the following expressions, we split the vectors of residuals, states and adjoints into two smaller vectors 
Corresponding to the aerodynamic and structural systems, i.e. 

R- RA 

Rs y- 
■w 
u v> = IpA 

fa 
(13) 

Figure 9 shows a diagram representing the coupling in this system.  Using this new notation, the adjoint 
equation for an aero-structural system can be written as 

8RA 

MI 
dw du 

IpA 

fa 

r M. 

du 
(14) 
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Figure 9: Schematic Representation of the Aero-Structural Governing Equations. 

In addition to the diagonal terms of the matrix that appear when we solve the single discipline adjoint 
equations, we also have off-diagonal terms expressing the sensitivity of one discipline to the state variables 
of the other. The residual sensitivity matrix in this equation is identical to that of the Global Sensitivity 
Equations (GSE) introduced by Sobieski. 

Since the factorization of the full matrix in the system of equations (14) would be extremely costly, our 
approach uses an iterative solver, much like the one used for the aero-structural solution, where the adjoint 
vectors are lagged and the two different sets of equations are solved separately. For the calculation of the 
adjoint vector of one discipline, we use the adjoint vector of the other discipline from the previous iteration, 
i.e., we solve 

BRA 

dw 

dRs 

■4>A = - 

^T 

du 

di_ 
dw 

I dI 

^s = -du- 

dRs 
-|T 

_ dw 

dRA 

du 

i>s, 

V'A, 

(15) 

(16) 

where ■ipA and ^s are the lagged aerodynamic and structural adjoint vectors. The final result given by this 
system, is the same as that of the original coupled-adjoint equations (14). We call this the Lagged-Coupled 
Adjoint (LCA) method for computing sensitivities of coupled systems. Note that these equations look like 
the single discipline adjoint equations for the aerodynamic and the structural solvers, with the addition of 
forcing terms in the right-hand-side that contain the off-diagonal terms of the residual sensitivity matrix. 
Note also that, even for more than two disciplines, this iterative solution procedure is nothing but the 
well-known Block-Jacobi method. 

As noted previously, dRs/du = K for a linear structural solver. Since the stiffness matrix is symmetric 
(KT = K) the structural equations (16) are self-adjoint. Therefore, the structural solver can be used to 
solve for the structural adjoint vector, Vs, by using the pseudo-load vector given by the right-hand-side of 
equation (16). 

Once both adjoint vectors have converged, we can compute the final sensitivities of the objective function 
by using 

dl     dl     lTdRA ,   .T^RS /17\ 
T^d-x+^-bV + ^-dV' (17) 

which is the coupled version of the total sensitivity equation. In order to solve the aircraft optimization 
problem we proposed earlier on, we also need sensitivities of the structural weight with respect to the 
design variables. Since the aero-structural coupling does not involve the weight, these sensitivities are easily 
computed. 

Figure 10 below shows the coupled aero-structural sensitivities of the CD with respect to a number of 
aerodynamic shape variables on the upper surface of a supersonic business jet wing. The agreement of our 
method, in comparison with results produced with the complex-step formulation is quite good. Similar 
agreement is found for structural cost functions and structural design variables. 
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Figure 10: Sensitivities of the Drag Coefficient with Respect to Shape Perturbations. 

Aero-Structural Design 

The objective in this optimization is to solve the design problem that we previously described, i.e., 

minimize     I = aCo + ßW 

xeM.n 

subject to   Cx = CLT 

KS>0 

In our example the value of CD corresponds to that of the cruise condition, which has a target lift 
coefficient of 0.1. The structural stresses, in the form of the KS function, correspond to a single maneuver 
condition, for which CLT — 0.2. 

All optimization work is carried out using the nonlinear constrained optimizer NPSOL, Euler calculations 
are performed on a wing-body 36-block mesh that is constructed from the decomposition of a 193 x 33 x 49 
C-H mesh. During the process of optimization, all flow evaluations are converged to 5.3 orders of magnitude 
of the average density residual and the Cx constraint is satisfied within 10-6. 

In order to parameterize the shape of the aircraft, we have chosen sets of design variables that apply to 
both the wing and the fuselage. The wing shape is modified by the design optimization procedure at six 
defining stations uniformly distributed from the side-of-body to the tip of the wing. The shape modifications 
of these defining stations are linearly lofted to a zero value at the previous and next defining stations. On 
each defining station, the twist, the leading and trailing edge camber distributions, and five Hicks-Henne 
bump functions on both the upper and lower surfaces are allowed to vary. The leading and trailing edge 
camber modifications are not applied at the first defining station. This yields a total of 76 OML design 
variables on the wing. Planform modifications, which are permitted by our software, were not used in the 
present calculations. Planform optimization is only meaningful if additional disciplines and constraints are 
taken into account. 

The shape of the fuselage is parameterized in such a way that its camber is allowed to vary while the total 
volume remains constant. This is accomplished with 9 bump functions evenly distributed in the streamwise 
direction starting at the 10% fuselage station. Fuselage nose and trailing edge camber functions are added 
to the fuselage camber distribution in a similar way to what was done with the wing sections. 

The structural sizing is accomplished with 10 design variables, which correspond to the skin thicknesses 
of the top and bottom surfaces of the wing. Each group is formed by the plate elements located between two 
adjacent ribs. All structural design variables are constrained to exceed a specified minimum gauge value. 

The complete configuration is therefore parameterized with a total of 97 design variables. As mentioned 
in an earlier section, the cost of aero-structural gradient information using our coupled-adjoint method is 
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Figure 11: Convergence history of the aero-structural optimization. 

effectively independent of the number of design variables: in more realistic full configuration test cases that 
we are about to tackle, 500 or more design variables will be necessary to describe the shape variations of the 
configuration (including nacelles, diverters, and tail surfaces) and the sizing of the structure. 

The initial application of our design methodology to the aero-structural design of a supersonic business jet 
is simply a proof-of-concept problem meant to validate the sensitivities obtained with our method. Current 
work is addressing the use of multiple realistic load conditions, dynamic loads, aeroelastic constraints, and 
the addition of diverters, nacelles, and empennage. 

In the present design case, we use a = 104, ß = 3.226 x 10-3. Note that the scalars that multiply the 
structural weight, W, and the coefficient of drag, CD, reflect the correct trade-off between drag and weight 
that was previously mentioned, i.e. that one count of drag is worth 310 pounds of weight. 

Figure 11 shows the evolution of this aero-structural design case for successive major design iterations. 
The figure shows the values of the coefficient of drag (in counts), the wing structural weight (in lbs), and the 
value of the KS function. Note that the structural constraints are satisfied when the KS function is positive. 
Because of the approximate nature of the KS function, all structural constraints may actually be satisfied 
for small but negative values of the KS function. 

The baseline design is feasible, with a cruise drag coefficient of 74.04 counts and a structural weight 
of 9,285 lbs. The KS function is slightly positive indicating that all stress constraints are satisfied at the 
maneuver condition. In the first two design iterations, the optimizer takes large steps in the design space, 
resulting in a drastic reduction in both Co and W. However, this also results in a highly infeasible design that 
exhibits maximum stresses that have a value of 2.1 times the yield stress of the material. After these initial 
large steps, the optimizer manages to decrease the norm of the constraint violation. This is accomplished 
by increasing the structural skin thicknesses while decreasing the airfoil thicknesses, resulting in a weight 
increase and a further reduction in drag. Towards major iteration 10, there is no visible progress for several 
iterations while the design remains infeasible. In iteration 13, a large design step results in a sudden increase 
in feasibility accompanied by an equally sudden increase in CD- The optimizer has established that the best 
way of obtaining a feasible design is to increase the wing thickness (with the consequent increases in CD and 
weight) and the structural thicknesses. From that point on, the optimizer rapidly converges to the optimum. 
After 43 major iterations, the KS constraint is reduced to O(10-4) and all stress constraints are satisfied. 
The aero-structurally optimized result has CD = 0.006922 and a total wing structure weight of 5,546 lbs. 

Visualizations of the baseline and optimized configurations are shown in Figures 12 and 13. Measures of 
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Figure 12: Baseline configuration for the supersonic business jet showing surface densities at the cruise 
condition and structural stresses at the maneuver condition. The density is normalized by the freestream 
value and the von Mises stresses are normalized by the material yield stress. 

performance and feasibility are presented in the first section of Table 2. The left halves of Figures 12 and 13 
show the surface density distributions with the corresponding structural deflections at the cruise condition 
for both the initial and optimized designs. The right halves show exploded views of the stress distributions 
on the structure (spar caps, spar shear webs, and skins, from top to bottom) at the Ci = 0.2 maneuver 
condition. From these Figures one can appreciate that not only have the surface density distributions 
changed substantially at the cruise point, but so have the element stresses at the maneuver condition. In 
fact, as expected from a design case with a single load condition, the optimized structure is exhibits stresses 
much closer to the yield stress, except in the outboard sections of the wing, where the minimum gauge 
constraints are active. It is also worth noting that about half of the improvement in the CD of the optimized 
configuration results from drastic changes in the fuselage shape: both front and aft camber have been added 
to distribute the lift more evenly in the streamwise direction in order to reduce the total lift-dependent wave 

drag. 
A total of 50 major design iterations including aero-structural analyses, coupled adjoint solutions, gradient 

computations, and line searches were performed in approximately 20 hours of wall clock time using 18 
processors of an SGI Origin 3000 system (R12000, 400 MHz processors). Since these are not the fastest 
processors currently available we feel confident that much larger models can be optimized with overnight 
turnaround in the near future. 

Comparison with Sequential Optimization 

The usefulness of a coupled aero-structural optimization method can only be measured by comparing with 
the results obtained using current state-of-the-art practices. In the case of aero-structural design, the typical 
approach is to carry out aerodynamic shape optimization with artificial airfoil thickness constraints meant to 
represent the effect of the structure, followed by structural optimization with a fixed OML. It is well known 
that sequential optimization cannot be guaranteed to converge to the true optimum of a coupled system. In 
order to determine the difference between the optima achieved by fully-coupled and sequential optimizations, 
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Figure 13: Optimized configuration for the supersonic business jet. 

we have also carried out one cycle of sequential optimization within our analysis and design framework. 
To prevent the optimizer from thinning the wing to an unreasonable degree during the aerodynamic 

shape optimization, 5 thickness constraints are added to each of the 6 defining stations for a total of 30 
linear constraints. These constraints are such that, at the points where they are applied, the wing box is not 
allowed to get any thinner than the original design. 

After the process of aerodynamic shape optimization is completed, the initial CD has decreased to 
0.006992, as shown in the lower portion of Table 2. After fixing the OML, structural optimization is 
performed using the maneuver loads for the baseline configuration at Cx = 0.2. The structural optimization 
process reduces the weight of the wing structure to 6,567 lbs. 

We can now compare the results of the fully coupled optimization in the previous section and the outcome 
of the process of sequential optimization. The differences are clear: the coupled aero-structural optimization 
was able to achieve a design with a range of 7,361 nm, which is 224 nm higher than that obtained from the 
sequential optimization. 

Finally, note that since sequential optimization neglects the aero-structural coupling in the computation 
of maneuver loads, there is no guarantee that the resulting design is feasible. In fact, the aero-structural 
analysis shows that the value of the KS function is slightly negative. 

Personnel Supported 
During the operational period for this grant, funds have been used to support the time of Profs. Antony 
Jameson and Juan J. Alonso and both Mr. Siva Kumaran and Mr. Kasidit Leoviriyakit (Ph.D. Candidates 
in the Department of Aeronautics & Astronautics). 
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CD (counts) KS "max/Oy ZFW (lbs) Range (nm) 
Baseline 73.95 1.15 x MT1 0.87 47,500 6,420 
Integrated optimization 69.22 -2.68 x 10-4 0.98 43,761 7,361 
Sequential optimization 
Aerodynamic optimization 

Baseline 74.04 
Optimized 69.92 

Structural optimization 
Baseline 1.02 x 10-1 0.89 47,500 
Optimized 1.45 x 10~8 0.98 44,782 

Aero-structural analysis 69.92 -9.01 x 10~3 0.99 7,137 

Table 2: Comparison between the integrated and sequential approaches to aero-structural optimization. 
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